-->

The Three Basic Varieties Of Glass

All the varieties of glass that are ordinarily met with contain silica (SiO2) associated with metallic oxides. In a true glass there are at least two metallic oxides. The unmixed silicates are not suitable for the purposes of glass. They are not so capable of developing the viscous condition when heated as mixtures—some of them are easily attacked by water, and many of those which are insoluble are comparatively infusible.
There is generally excess of silica in glass, that is, more than is necessary to form normal silicates of the metals present.
The best proportions of the various constituents have been ascertained by glass-makers, after long experience; but the relation of these proportions to each other, from a chemical point of view, is not easy to make out.

The varieties of glass from which tubes for chemical glass-blowing are made may be placed under three heads, and are known as

1. Soft soda glass, Also known as French glass.

2. Lead glass, Also known as English glass.

3. Hard glass.

In purchasing glass tubes, it is well to lay in a considerable stock of tubes made of each of the two first varieties, and, if possible, to obtain them from the manufacturer, for it frequently happens that pieces of glass from the same batch may be much more readily welded together than pieces of slightly different composition. Yet it is not well to lay in too large a stock, as sometimes it is found that glass deteriorates by prolonged keeping.

As it is frequently necessary to make additions, alterations, or repairs to purchased apparatus, it is best to provide supplies both of soft soda glass and lead glass, for though purchased glass apparatus is frequently made of lead glass, yet sometimes it is formed from the soda glass, and as it is a matter of some difficulty to effect a permanent union between soda glass and lead glass, it is desirable to be provided with tubes of both kinds.

Many amateurs find that soda glass is in some respects easier to work with than lead glass. But, on the other hand, it is somewhat more apt to crack during cooling, which causes much loss of time and disappointment. Also, perhaps in consequence of its lower conductivity for heat, it very often breaks under sudden changes of temperature during work. If, however, a supply of good soda glass is obtained, and the directions given in this book in regard to annealing it are thoroughly carried out, these objections to the use of soda glass will, to a great extent, be removed. I find, however, that when every precaution has been taken, apparatus made of soda glass will bear variations of temperature less well than that made of lead glass. Therefore, although the comparatively inexpensive soda glass may be employed for most purposes without distrust, yet I should advise those who propose to confine themselves to one kind of glass, to take the small extra trouble required in learning to work lead glass.

In order to secure glass of good quality, a few pieces should be obtained as a sample, and examined by the directions given below. When the larger supply arrives, a number of pieces, taken at random, should be examined before the blow-pipe, to compare their behaviour with that of the sample pieces, and each piece should be separately examined in all other respects as described subsequently.

Hard glass is used for apparatus that is required to withstand great heat. It is difficult to soften, especially in large pieces. It should only be employed, therefore, when the low melting points of soda or lead glass would render them unsuitable for the purpose to which the finished apparatus is to be put. What is sold as Jena combustion tube should be preferred when this is the case.