The Basic Properties of Nitro-Glycerine

The Basic Properties of Nitro-Glycerine


Nitro-glycerol is a heavy oily liquid of specific gravity 1.6 at 15° C., and when quite pure is colourless. The commercial product is a pale straw yellow, but varies much according to the purity of the materials used in its manufacture. It is insoluble in water, crystallises at 10.5° C., but different commercial samples behave very differently in this respect, and minute impurities prevent or delay crystallisation. 
Solid nitro-glycerol[A] melts at about 12° C., but requires to be exposed to this temperature for some time before melting. The specific gravity of the solid form is 1.735 at +10° C.; it contracts one-twelfth of its volume in solidifying. Beckerheim[B] gives the specific heat as 0.4248 between the temperatures of 9.5° and 9.8° C., and L. de Bruyn gives the boiling point as above 200°.

Nitro-glycerine has a sweet taste, and causes great depression and vertigo. It is soluble in ether, chloroform, benzene, glacial acetic acid, and nitro-benzene, in 1.75 part of methylated spirit, very nearly insoluble in water, and practically insoluble in carbon bisulphide. Its formula is C_{3}H_{5}(NO_{3})_{3}, and molecular weight 227. When pure, it may be kept any length of time without decomposition. Berthelot kept a sample for ten years, and Mr G. M'Roberts, of the Ardeer Factory, for nine years, without their showing signs of decomposition; but if it should contain the smallest trace of free acid, decomposition is certain to be started before long. 

This will generally show itself by the formation of little green spots in the gelatine compounds, or a green ring upon the surface of liquid nitro-glycerine. Sunlight will often cause it to explode; in fact, a bucket containing some water that had been used to wash nitro-glycerine, and had been left standing in the sun, has in our experience been known to explode with considerable force. Nitro-glycerine when pure is quite stable at ordinary temperatures, and samples have been kept for years without any trace of decomposition. It is very susceptible to heat, and even when quite pure will not stand a temperature of 100° C. for a longer period than a few hours, without undergoing decomposition. Up to a temperature of 45° C., however, properly made and purified nitro- glycerine will remain unchanged almost indefinitely. 

The percentage composition of nitroglycerine is as follows:—

Found. Theory for C_{3}H_{5}(N0_{2})_{3}. 
Carbon 15.62 15.86 per cent. 
Hydrogen 2.40 2.20 " 
Nitrogen 17.90 18.50 " 
Oxygen … 63.44 "

The above analysis is by Beckerheim. Sauer and Adou give the nitrogen as 18.35 to 10.54 per cent. by Dumas' method; but I have never found any difficulty in obtaining percentages as high as 18.46 by the use of Lunge's nitrometer. The decomposition products by explosion are shown by the following equation— 

2C_{3}H_{5}(NO_{3}){3} = 6CO{2} + 5H_{2}O + 6N + O; 

that is, it contains an excess of 3.52 per cent. of oxygen above that required for complete combustion; 100 grms. would be converted into— 
Carbonic Acid (CO_{2}) 58.15 per cent. 
Water 19.83 " 
Oxygen 3.52 per cent. 
Nitrogen 18.50 "

The volume of gases produced at 0° and 760 mm., calculated from the above, is 714 litres per kilo, the water being taken as gaseous. Nitro-glycerine is decomposed differently if it is ignited as dynamite (i.e., kieselguhr dynamite), and if the gases are allowed to escape freely under a pressure nearly equal to that of the atmosphere. 
Sarrau and Vieille obtained under these conditions, for 100 volumes of gas—

NO 48.2 per cent. 
CO 35.9 " 
CO_{2} 12.7 " 
H 1.6 per cent. 
N 1.3 " 
CH_{4} 0.3 "

These conditions are similar to those under which a mining charge, simply ignited by the cap, burns away slowly under a low pressure (i.e., a miss fire). In a recent communication, P.F. Chalon (Engineering and Mining Journal, 1892) says, that in practice nitro-glycerine vapour, carbon monoxide, and nitrous oxide, are also produced as the result of detonation, but he attributes their formation to the use of a too feeble detonator. Nitro-glycerine explodes very violently by concussion. It may be burned in an open vessel, but if heated above 250° C. it explodes. Professor C.E. Munroe gives the firing point as 2O3°-2O5° C., and L. de Bruyn[A] states its boiling point as 185°. He used the apparatus devised by Horsley. The heat of formation of nitro-glycerine, as deduced from the heat of combustion by M. Longuinine, is 432 calories for 1 grm.; and the heat of combustion equals 1,576 cals. for 1 grm. In the case of nitro-glycerine the heat of total combustion and the heat of complete decomposition are interchangeable terms, since it contains an excess of oxygen. According to Dr W.H. Perkin, F.R.S.,[B] the magnetic rotation of nitro-gylcerine is 5,407, and that of tri-methylene nitrate, 4.769 (diff. = .638). Dr Perkin says: "Had nitro-glycerine contained its nitrogen in any other combination with oxygen than as -O-NO_{2}, as it might if its constitution had been represented as C_{3}H_{2}(NO_{2}){3}(OH){3}, the rotation when compared with propyl nitrate (4.085) would be abnormal."

Many attempts have been made to prepare nitro-glycerine explosives capable of withstanding comparatively low temperatures without freezing, but no satisfactory solution of the problem has been found. Among the substances that have been proposed and used with more or less success, are nitro- benzene, nitro-toluene, di-nitro-mono-chlorhydrine, solid nitro derivatives of toluene,[A] are stated to lower the freezing point of nitro-glycerine to -20°C. without altering its sensitiveness and stability. The subject has been investigated by S. Nauckhoff,[B] who states that nitroglycerine can be cooled to temperatures (-40° to -50° C.) much below its true freezing point, without solidifying, by the addition of various substances. When cooled by means of a mixture of solid carbon, dioxide, and ether, it sets to a glassy mass, without any perceptible crystallisation. 
The mass when warmed to 0°C. first rapidly liquefies and then begins to crystallise. The true freezing point of pure nitro- glycerine was found to be 12.3°C. The technical product, owing to the presence of di-nitro-glycerine, freezes at 10.5° C. According to Raoult's law, the lowering of the freezing point caused by m grms. of a substance with the molecular weight M, when dissolved in 100 grms. of the solvent, is expressed by the formula: [Delta] = E(m/M), where E is a constant characteristic for the solvent in question. The value of E for nitro- glycerine was found to be 70.5 when calculated, according to Van't Hoff's formula, from the melting point and the latent heat of fusion of the substance. Determinations of the lowering of the freezing point of nitro- glycerine by additions of benzene, nitro-benzene, di-nitro-benzene, tri- nitro-benzene, p.-nitro-toluene, o.-nitro-toluene, di-nitro-toluene, naphthalene, nitro-naphthalene, di-nitro-naphthalene, ethyl acetate, ethyl nitrate, and methyl alcohol, gave results agreeing fairly well with Raoult's formula, except in the case of methyl alcohol, for which the calculated lowering of the freezing point was greater than that observed, probably owing to the formation of complex molecules in the solution.

The results show that, in general, the capacity of a substance to lower the freezing point of nitro-glycerine depends, not upon its freezing point, or its chemical composition or constitution, but upon its molecular weight. Nauckhoff states that a suitable substance for dissolving in nitro- glycerine, in order to lower the freezing point of the latter, must have a relatively low molecular weight, must not appreciably diminish the explosive power and stability of the explosive, and must not be easily volatile at relatively high atmospheric temperatures; it should, if possible, be a solvent of nitro-cellulose, and in every case must not have a prejudicial influence on the gelatinisation of the nitro-cellulose

Also see :

Share this:

Disqus Comments